
Abstract. The article by P. Cassam-Chenaı̈ and D.
Jayatilaka (Theor Chem Acc (2001) 105: 213) is critically
analyzed.
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An article [1] has recently been published in Theoretical
Chemistry Accounts which demonstrates the ‘‘funda-
mental problems’’ in the foundation of the atom-
in-molecules (AIM) theory developed by Bader and
coworker [2] (see also Refs. [3, 4]. According to the
Bader definition, ‘‘an atom’’ (or equivalently, an atomic
basin) in the given N -electron molecule in the quantum
state jWi is an open subsystem or domain, X, of
this molecule whose boundary, oX, is determined by a
so-called zero flux condition,

rrqðrÞ � nðrÞ ¼ 0; r 2 oX : ð1Þ
In Eq. (1), qðrÞ is the one-electron density associated
with the N -electron wave function W (see Ref. [3] for the
definition) and nðrÞ is the outward normal to oX at r.
Actually, Eq. (1) is the first-order differential equation
which is well defined iff the correct boundary conditions
are imposed [5]. Each domain, X, determined by Eq. (1)
usually includes a nuclear attractor; however, in general,
some domain(s) may be located around nonnuclear
positions. This takes place, for instance, for the ground-
state molecule Li2 and some other molecules and crystals
[3, 6]; however, it does not mean at all that the Bader
definition of ‘‘an atom in a molecule’’ is invalid. Rather,
it is a physically sound approach although we have to
admit that it is not in fact a ‘‘theory of everything’’ – it is
one of many approaches to define atoms in multiatomic
systems like, for instance, a recently launched one based

on the Bohm potential [7]. Nevertheless, many chemists
successfully operate with the AIM theory [8] owing to
that the idea of the local zero flux surface in the gradient
vector field of the electron density, qðrÞ, behind it is
rather impressive and well grounded.

The present work aims to thoroughly analyze the
‘‘fundamental problems’’ posed in Ref. [1]. It is dem-
onstrated that the objection arising in Sects. 2–5 of Ref.
[1] are incorrect (notice that the ‘‘fundamental problem’’
treated in Sect. 1 has already been mentioned).

Let us start with Sect. 3 of Ref. [1], which introduces a
family of one-electron trial wave functions

Uðr; aÞ ¼ WðrÞ þ evðr; aÞ ; ð2Þ
where

WðrÞ ¼ e
r
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where r is a length of r; e is a constant, and a is an
arbitrary parameter. This family lies within a sphere of
radius e=2 (which is a stronger condition than that in
Ref. [1]) centered at WðrÞ.

Some algebra shows that the function vðr; aÞ defined
in Eq. (3) as a function of a has two extrema: the max-

imum vmaxðaÞ ¼ 1=ð4
ffiffiffiffiffiffiffiffiffiffi
pea3

p
Þ at r ¼ a=2 and the mini-

mum vminðaÞ ¼ 
1=ðe3
ffiffiffiffiffiffiffi
pa3

p
Þ at r ¼ 3a. They are distinct

from each other iff a 6¼ 0. If a ¼ 0 and r 6¼ 0; vðr; aÞ
simply vanishes. On the other hand, it is undefined if
a ¼ 0 and r ¼ 0. This implies that a ¼ 0 is invalid in the
analysis of the equation

e
3ða
1Þa3=2 ¼ e ð4Þ
derived in Ref. [1] under the condition that Uðr; aÞ ¼ 0 at
r ¼ 3a. Notice that its left-hand side reaches a maximum
equal to

e ¼ ðe=2Þ3=2 ’ 1:3591409 : ð5Þ

The authors [1] then concluded that this ‘‘means that no
matter how small e is chosen there are always at least
two values of a such that’’ Uð3ar=r; aÞ ¼ 0 ‘‘and so,
where’’ rrqð3ar=r; aÞ associated with Uðr; aÞ vanishes
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over all direction in three dimensions. This statement is
incorrect for two reasons. First, as already mentioned,
the value a ¼ 0 (and hence, r ¼ 0) must be excluded
from the variational calculus on a family (Eq. 2) of trial
functions. Second, Eq. (5) demonstrates the e is fixed at
about 1.3591409 and thus it cannot be chosen arbitrar-
ily, particularly, small as claimed in Ref. [1]. Let us
continue the arguments of Ref. [1]: ‘‘Therefore for either
one of these values of a there is, in addition to the
surface at infinity, a surface of finite radius at r ¼ 3a
satisfying Eq. (1) (inherited from the 2s-like component
of U). This surface does not correspond to an attractor
since it is a node of the density and it is not connected to
the surface at infinity. Since a continuous mapping maps
a connected set to a connected set, oXðWÞ cannot be
mapped continuously onto the two unconnected surfaces
obtained for U.’’ The first sentence is correct, however, it
is incorrect to require in the third sentence the existence
of a continuous mapping between oXðUÞ and oXðWÞ
where W and U are connected via Eq. (2) and where
a continuous feature of e is lost because it is fixed by
Eq. (5). Therefore, a variational limit e ! 0 necessary to
obtain the exact wave function of the ground-state
hydrogen atom cannot be taken.

In Sect. 4 of Ref. [1], the authors considered the local
zero flux condition. Precisely, on p.215, they wrote
that within the AIM theory, ‘‘the local zero flux condi-
tion... was a stronger, sufficient but not necessary con-
dition. However, ... it was argued ... that the zero flux
condition was necessary. This is clearly false since the
more general local condition for all U
rrqðrÞ � nðrÞ ¼ rr � AðrÞ � nðrÞ; r 2 oX ð6Þ
where A(r) is an arbitrary vector field, is sufficient to
obtain net zero flux for all U.’’ Equation (6) (or precisely,
Eq. (9) in Ref. [1]) is incorrect for the following reason.
As well known, any vector field, say F(r), can be
decomposed, according to the Helmholtz theorem [9],
into two components

F ¼ Fjj þ F? : ð7Þ
Fjj is a component of F such that its curl, rr � Fjj, is
identically zero. This is a longitudinal or irrotational
component which can be represented as Fjj ¼ rrP jj,
where P jj is a scalar function. The other, transverse
or rotational component, F? has zero divergence, i.e.,
rr � F? ¼ 0. Hence, F? ¼ rr � P?. In Eq. (6), F ¼
rrqðrÞ and, therefore, its rotational component is zero,
and that is why the initial assumption (Eq. 6) is
incorrect. In the other words, the aforementioned
proposal of Ref. [1] aimed to show that the statement
of the AIM theory that Eq. (1) is the necessary condition
‘‘is clearly false’’ is simply invalid.

Let us now turn to the arguments presented in Sect. 5
of Ref. [1]. The authors’ incorrectness stems from their
misinterpretation of which density, the electron–nuclear
density or the one-electron density, should be used in the
AIM theory. Let us first suggest that the total electron–
nuclear wave function in the form

Wnðr1; . . . ; rN ;R1; . . .RM Þ
¼ /eðr1; . . . ; rN ;R1; . . . ;RMÞvnðR1; . . . ;RM Þ ð8Þ

is a rather good approximation to describe a given
molecular system of N electrons andM nuclei. In Eq. (8),
/eðr1; . . . ; rN ;R1; . . . ;RM Þ is the N -electron wave eigen-
function of the electronic sub-Hamiltonian HðR1;
. . . ;RMÞ (the colon in /e, Eq. 8, separates the electronic
variables from the nuclear coordinates which are treated
as parameters). Consider two total wave functions
Wn1ðr1; . . . ; rN ;R1; . . . ;RMÞ and Wn2ðr1;...;rN ;R1;...;RM Þ
having the form of Eq. (8). By assumption [1], these
wave functions describe two distinct orthogonal vibra-
tional states of a given molecular system corresponding
to the same electronic state. By analogy with Ref. [1], we
also suggest that vn2ðR1;...;RMÞ has a nodal nuclear
configuration, say Ro

1 ;...;R
o
M , such that vn2ðR

o
1 ;...;R

o
MÞ¼

0: This implies that the quantity

qn2ðr;R1; . . . ;RM Þ ¼ qeðr;R1; . . . ;RM Þjvn2ðR1; . . . ;RM Þj2

ð9Þ
defined by Eqs. (11), (12), and (13) or Ref. [1], where
qeðr;R1; . . . ;RMÞ is the one-electron density associated
with /eðr1; . . . ; rN ;R1; . . . ;RM Þ, vanishes at Ro

1 ; . . . ;R
o
M .

In contrast, except maybe in some pathological cases,
qeðr;Ro

1 ; . . . ;R
o
M Þ does not vanish everywhere in 3D

space R3 because it corresponds to the square integrable
eigenfunction /eðr1; . . . ; rN ;Ro

1 ; . . . ;R
o
M Þ of the electronic

sub-Hamiltonian He R
o
1 ; . . . ;R

o
M

� �
depending parametri-

cally on Ro
1 ; . . . ;R

o
M . This is precisely the one-electron

density qeðr;Ro
1 ; . . . ;R

o
M Þ to which the AIM theory

should actually be applied. Therefore, the AIM theory
cannot be applied to qn2ðr;R1; . . . ;RMÞ as treated in Ref.
[1] because it is in fact the one-electron-nuclear density
defined in R3ð1þMÞ:

Concluding, it has been shown that the ‘‘funda-
mental problems’’ of the foundations of the AIM the-
ory by Bader and coworker posed in Sects. 2–5 of Ref.
[1] are incorrect. However, the article by Cassam-
Chenaı̈ and Jayatilaka [1] raised certain doubts in its
foundations which will hopefully inspire further theo-
retical investigations in this area, directed particularly
toward a well-grounded justification of nonnuclear
attractors.
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